
Visualization of the Relevance: Using Physics Simulations for
Encoding Context

Daniel Roßner∗
Hof University

Institute of Information Systems
Hof, Germany

daniel.rossner@iisys.de

Claus Atzenbeck
Hof University

Institute of Information Systems
Hof, Germany

claus.atzenbeck@iisys.de

Tom Gross
University of Bamberg

Human-Computer Interaction Group
Bamberg, Germany

tom.gross@uni-bamberg.de

ABSTRACT
The task of organizing and retrieving knowledge is often elabo-
rative and involves different types of media including digital or
analog. In this paper we describe a system that is based on related
research in the fields of spatial hypertext, information retrieval, and
visualization. It utilizes a 2D space on which users can add, remove,
or manipulate information entities (so-called user nodes) visually.
A spatial parser recognizes the evolving structure and queries a
knowledge base for helpful other information entities (so-called
suggestions nodes).

Similar to user nodes, those suggestions are presented as visual
objects in the space. We propose a physics model to simulate their
behavior. Their characteristics encode the relevance of suggestions
to user nodes and to each other. This enables human recipients
to interpret the given visual clues and, thus, identify information
of interest. The way users organize nodes spatially influences the
parsed spatial structures, i.e., the placement of suggestion nodes.
This allows the creation of complex queries without any prior
knowledge, yet the users do not have to be aware of that, because
they can express their thoughts implicitly by manipulating their
nodes.

We discuss the strengths of a physics based simulation to encode
context visually and point to open issues and potential solutions.
On the basis of an implemented demonstrator we show the benefits
compared to similar and related applications in the field of informa-
tion visualization, especially when it comes to tasks where a high
portion of creativity is involved and the information space is not
well known.
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• Information systems → Information retrieval query pro-
cessing; Multimedia databases; Search interfaces; • Human-
centered computing → Hypertext / hypermedia; Touch
screens; Visual analytics; Information visualization;
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1 INTRODUCTION
Spatial hypertext supports authoring of implicit structures by apply-
ing visual clues to express relation and is easy to read, as humans
can take advantage of their perceptual abilities to navigate and
explore space visually [21]. Effort went into the research of algo-
rithms that make user-generated, implicit, spatial structure usable
for hypertext systems. Starting with Marshall and Shipman, who
implemented a parser, recognizing pre-existing structure types
like piles, composites, alignments and hierarchies of those [19, 30].
Igarashi et al. introduced a genetic algorithm that adapts the parser,
based on the users’ feedback. Furthermore it improves interpreta-
tion of ambiguous structures like clusters [14]. With CAOS [25] it
was shown, that it is advantageous to keep the machine’s interpre-
tation in sync with what the user is doing, because it allows instant
visual feedback and further applications like collaboration support.
Most recently Schedel enhanced spatial parsing with a temporal
inspection of user interaction events [28].

The mentioned improvements show the difficulty of handling
human-generated spatial structure. To come close to an interpre-
tation of a human being, many properties have to be considered.
It is not enough to just check for well-defined structure types or
proximity. Moreover humans tend to interpret things differently,
which means that different results may be equally good or bad.

In this paper we focus on the process which could be referred to
as “inverse spatial parsing”. Instead of interpreting spatial structure,
the machine is able to generate it, in a way a human potentially
would do it. While this is a very generic scenario, we narrow it
down as follows: A system allows a user to add, remove and manip-
ulate nodes in a 2D space. The “content” of these is not of interest
for this system, they might represent software components in a
development tool [27], query phrases of an information retrieval
tool [15] or simple keywords. Comparable to VIKI [22], the sys-
tem uses a spatial parser to interpret visual relationships between
nodes and queries a knowledge base for suggestions. As with the
nodes, the content of these depend on the domain the system is
used for. They come together with a relevance measure from 0 to 1
in relation to each node, including other suggestions. The overall
system is described in [4] and depicted in Fig. 1. The visualization
of the suggestions happens within the 2D space that is used by
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the user, in such a way that it (1) does not alter the structure of
user-generated nodes, (2) preserves the suggestions’ structure and
(3) merges both visual structures into one spatial hypertext, which
is readable as another human would have added the suggestions.
To combine the concept of understanding and producing emergent
visual structure is a novel approach in spatial hypertext research,
that offers an efficient platform of communication between human
and machine. Users do not have to change their focus to, e.g., a list
or something else; they can continue what they are doing and still
profit from the system’s input.

Whenever a scenario involves human creativity which can be
supported by a machine, AI or a search engine it benefits from our
proposed system. This is because of the often implicit and visually
accessible nature of spatial hypertexts. Creative tasks consist of
many manipulations and changes of ideas, documents, sketches
and other types of “media”. This media is organized in a space, may
it be a hobby room, a sketch board or as in our proposal a computer
screen. If the system is able to understand the organization of the
bits and pieces of a creative task and integrates its help, suggestions
and support in the same space, as an other human being would do,
its output is easier to understand and probably of better quality.

The challenges of this visualization techniques are similar to that
of spatial parsing: Many factors influence how humans interpret
what they are seeing on their screen. Proximity, defined by the
position of the nodes, is the most important one for any perceptual
task [18], belong others like size, color and shape. Additionally
the system should be able to react to any manipulation done by
the user in real time to give immediate feedback in the form of an
updated visualization and for significant structure changes updated
suggestions. These updates should happen as often as possible,
but it is important to offer a smooth, non-intrusive transition in
between.

2 RELATEDWORK
This work has evolved of research in spatial hypertext systems, spa-
tial parsers, and antecedent systems became part of the hypertext
community in the early 1990s. Systems like Aquanet [20], VIKI [22],
VKB [29], or CAOS [25] propose structure mechanisms that are
different to nodes and links, the most prominent structure type in
hypertext, also known as navigational hypertext. In his 1987 paper,
Frank Halasz criticizes the explicit nature of navigational hyper-
text systems: “The static nature of hypermedia networks could be
largely eliminated (when appropriate) by including in the hyper-
text model a notion of virtual or dynamically-determined structures”
[12]. Spatial hypertext is one possible way to follow this proposal. It
provides such dynamic, virtual structures, as associations between
nodes are represented implicitly. Similar to paper snippets on a
desk, the spatial arrangements or visual appearance of nodes in
spatial hypertexts reveal their associations only by interpretation.
Such associations are fuzzy, fragile, and ambivalent by nature. As
a result, different people may interpret those implicit associations
or their respective strengths differently, which leads to challenges
related to the automatic placement of nodes within a given spatial
hypertext.

The visualization of retrieved suggestions is related to the ex-
tensive work done in the area of information visualization and

retrieval in general. While some challenges are similar to that of
graph visualization, e.g., nodes should not overlap, the solutions
are not completely applicable. The most important difference is
the lack of edges, because relations are “encoded” by visual means.
Therefore algorithms do not have to care for potentially crossing
edges. Furthermore they do not support that high degree of inter-
action needed and do not consider structure created by humans,
which must not be altered, but augmented with additional nodes,
only.

The field of recommender systems has produced great research
on how to generate suggestions for product and services for users
who do not need to be experts of the respective domain [26]. Here
it has been shown that besides the algorithmic quality leading to
adequate suggestions also models for presenting and explaining
the recommendations are essential [5]. This holds for both single-
user systems and group recommender systems. For instance, the
RecoUIE system pro-actively generated recommendations and dy-
namically positioned them on the multi-user interface [11]. For
positioning suggestions multiple visual attributes are potentially
relevant (e.g., position, shape, or size) [6].

Olsen et al. introduced a system to visualize documents in a 2D
space, called VIBE [24]. A user can define an information space con-
sisting of a number of points-of-interest (POIs). These POIs have a
similar meaning as our user-created nodes, they are used to retrieve
documents, which are related to the POIs. Each document has a
score/relevance to each POI, that is used to compute a position by
calculating a linear combination. If a document depends on one POI
only, it is placed right on top of it; if it is equally relevant to two
POIs it is placed in the mid of the line between those. Moving the
POIs around is a very important task for the user, because it may
reveal related logical clusters of POIs and documents. Our system
differs from that, as it does not only honor the position of “POIs”
(nodes), but their overall visual structure and we do not represent
“documents” (suggestions) as points of different sizes, which may
overlap and can not be distinguished, but as objects that can contain
any type of representation. Fig. 4 shows two screenshots, where the
content is represented as text, picture and video. Moreover VIBE
focuses on relations between documents and POIs, it omits those
between documents. But this might be a relevant information when
it comes to discovering an unknown information space, because it
helps finding relevant clusters of information, even though they are
barely related to the POIs. The concept got improved by Klouche
et al. [15] with an additional result list view and the capability of
visual re-ranking the result. Documents are rendered as opaque
circles of varying radius. The opacity encodes the density of docu-
ments and radius the overall relevance. By clicking anywhere in
the visual space, the result list gets re-ranked, such that “closer”
documents are shown first. As VIBE this system does not make rel-
evance of documents to each-other visible for the user. After all, it
is a trade-off between losing structural information and ambiguity
when too many relationships influence positioning.

Systems like Bead [7] utilize a 3D space to represent visual struc-
tured documents. In contrast to VIBE, Bead does not support “POIs”
within the information space, but only as words which form a query.
Document distances are measured, the more similar documents are,
the smaller the distance is. Bead renders documents as simple par-
ticles and uses the measured distances to apply forces of attraction
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Figure 1: a) shows the 2D visual space with four nodes A, B, C, and D. Orange colored relationships are calculated by a spatial
parser. The higher the value, the more visual related nodes are. The result is sent to a knowledge base, searching for related
suggestions in the information space (green relationships, not all are shown here). Those green relationships have a weight
between 0 and 1 to indicate relevance an as such build – with nodes A to D – a complete graph, which is sent back to the visual
space. In a not shown step, suggestions are rendered within the visual space.

and repulsion to all the particles, based on the model of a damped
spring. Following the minimum total potential energy principle the
system of particles tends to a state of minimal potential energy,
meaning that all springs are as close to their “preferred distance”
as the system as a whole allows. The relaxed position of a spring is
derived by document distances, meaning that a user can use his per-
ception of proximity to recognize strongly related particles. Even if
not utilized in this system, the physical based simulation allows real
time calculation of positions, while a user is manipulating particles.
We adapted that concept for our prototype and added awareness of
pre-existing structure.

With InfoCrystal [31] Spoerri presented a solution for some
problems of VIBE and BEAD. If one is using big queries, e.g., many
POIs in VIBE, multidimensional relations have to be scaled down.
InfoCrystal is inspired by Venn diagrams, but imposes a structure to
overcome its limit to represent relationships amongmore than three
sets. Instead of showing documents directly, they are hided behind
an iconic representation, one for each combination of possible
boolean queries. By (de-)selecting those inner icons, the output
can be filtered accordingly. This solution simplifies rendering and
querying of documents, at the cost of losing valuable information,
like the continuous value of relationships to each other. Instead we
propose to reduce the number of rendered suggestions initially by
calculating the relevance to a complete set of nodes, e.g., the mean
value, and taking the best n. After that, it is the user’s responsibility
to change n or mark suggestions that she is not interested in, to
load more of them.

This type of interaction can be seen as a sort of visual querying.
Users start with a simple statement and receive suggestions, whose
relevance is visual encoded. If they are interested in one or more of
them, they can add them to their own nodes, thus alter the scope
of the original query. A similar system is used by VINETA [17],
which limits the interacting to clicking on keywords. The more
keywords are marked, the less the impact of antecedent keywords

is, regarding the result. In our prototype this can be achieved by
changing the visual structure, which gives the user more control
on what is happening in the visual space.

DARE [34] provides the user with a special view, the so called
“visual space” to display themultidimensional document space in 2D.
Users build a query vector and choose a reference point, which can
sit anywhere and is movable at any given time. The two orthogonal
axis in the visual space represent a (1) distance and (2) cosine
measure. The angle is formed by two lines, starting at the document
vector and the freely chosen reference point, both intersecting at
the query vector. The model is suitable for different evaluation
models, which essentially shows the strength of a combination of
different measures in one visualization environment. This concept
is carried on by TOFIR [33], using an angle-angle based visual space,
whereas GUIDO [23] promotes a distance-distance based one.

In contrast to prior work, we try to broaden the scope of the
system by combining concepts from spatial hypertext research,
especially visual/spatial parser to give the machine a sense of what
a user is expressing spatially, and visualizing techniques of infor-
mation retrieval tools. Apart from that, we demand interaction
and manipulation of the information space to be a very important
possibility to refine queries.

3 SEMANTICS VISUALIZATION
When we talk about semantics in context of hypertext, we usually
mean relationships. Many characters can form words, words can
form sentences, if they are seen in a certain order. Relationships
reveal semantics, which is defined by a grammar in this example. Be-
fore describing our conception of semantics visualization, we need
to specify the kind of hypertext we are dealing with. We assume a
knowledge base of domain specific information. This information
space is a graph, whose edges encode relevance between nodes
– missing edges indicate no or zero relevance. We do not assume
higher order structures like hierarchies and composites. Whenever



Figure 2: Excerpt of a knowledge base for demonstration
purposes. Contains weighted relations ofmovies, actors and
other participants.

such relations are needed, they have to be encoded elsewhere, e.g.,
“within” the node or an other structure service comes into place [3].
As in Fig. 1, relevance is represented as numerical value between 0
and 1, called weight. The calculation of those depends on the do-
main, e.g., for documents the vector space model could be applied.
In Fig. 2 we show an excerpt of the knowledge base that is used for
the demonstrator described in Sect. 4.

We aim to provide a system, that is able to visualize these rela-
tions. In Sect. 2 we describe several other solutions, that demon-
strate the strength of visualizing such a structure in a 2D space
[1] to facilitate human visual perception. Additionally we see an
important role in representing the relation between a query and
its results. It is a try to merge the visual space of the user with
the information space of the machine. Both worlds are hard to
understand for each other. Therefore we propose spatial parsers
and semantic positioning as tools to allow both partners to speak
the same visual language (cf. [13]). This additional communication
channel is easy to use, as it does not demand for a special syntax, be-
cause it takes advantage of the implicitly happening interpretation
of visual structures.

3.1 Physics metaphor
Initially we experimented with simple and naive positioning algo-
rithms. A circular layouter arranges information objects radially
around a geometrical center area, resembling a fish eye view. Very
relevant suggestions are close to the center and bigger than less
relevant ones. While this works quite well to identify suggestions
with a high relevance to a query, which is located in the center
area, the structure of those is not visible. In a next step, we adapted
the idea of VIBE, by adding a factor, representing the degree of
suggestions overlapping each other. An optimizing algorithm tries
to find a good compromise of calculated position and overlapping
factor. It turned out that this approach does not work well in an
interactive environment: moving nodes may lead to a situation,

where compromises are not good anymore. Any re-optimizing can
result in re-assigning completely different positions. Suggestion
start to jump around, making it impossible for the user to track their
path. Furthermore, as in VIBE, the rendering area for suggestions is
confined by the user’s nodes. Another approach tackled this issue
by splitting a suitable big area around objects forming the query
in many smaller rectangular pieces. For each of those subareas a
relevance value was calculated, meaning that suggestions of a cer-
tain relevance would fit in there. This value honored the distance
and obstacles between a node of the query and the sub area. The
greater the portion of obstacles to the total distance, the less the
value. Heat emitting objects would be a good metaphor: Thermal
radiation decreases over distance and is absorbed my massive ob-
jects. But the more sophisticated the positioning algorithms got, the
harder it was to provide a decent behavior for interacting scenarios.

Many graph visualization tools solve a similar problem, by im-
plementing a physics metaphor [16, 32]. Instead of putting much
effort in complex algorithms, a simulated physical environment is
created. It is not necessary to have a high accuracy or to support
all different kinds of mechanics. Physical attributes, like density,
velocity, friction, or size are assigned to any visual object, defining
their behavior in the simulation. Repulsion can prevent overlap-
ping, attraction keeps objects together and so on. There are many
metaphors out there, which give a sense of how visualization helps
us to achieve a diverse set of tasks. Physics metaphors make use
of the “naturalness [. . . ] based on the everyday familiarity of the
physical environment” [8].

3.2 The applied model
When choosing a physics metaphor, it is important to apply a
suitable model of physical attributes to all visual objects, such that
it matches our definition of semantics visualization. As proximity
is by far the most important and generally applicable attribute to
encode relationships, we focus on that.

Following the example of Bead, we use a spring based model
to attract and repulse objects to and from each other. Which kind
of force is applied depends on the current length of a connecting
spring. A spring has an ideal state, a relaxed length with no po-
tential energy. Thus the corresponding relevance must be mapped
to this state. In Fig. 3 all important variables for that mapping are
illustrated. The perception of proximity always depends on the
given spatial context (cf. [10]). The “bigger” two objects are, the
higher the absolute distance can be and still be recognized as close
to each other. Therefore a factor dFAC is introduced as

dFAC = −rel × (dMAX − dMIN ) + dMAX

where dMAX refers to a distance factor that indicates a relevance
of 0 and dMIN of 1. The result is multiplied by the sum of ra and rB ,
giving us an absolute value for the ideal length of the underlying
spring model. Because this spring is connecting the centers of both
objects, dAB is calculated as follows:

dAB = dFAC × (rA + rB ) +
rA + rB

2
Whenever a spring is not in its ideal state, it applies a force on

both objects, which increases the higher the deviation is. Addition-
ally we use a greater force for high relevance springs. This improves



the positioning of important suggestions, but may lead to a worse
positioning of irrelevant ones.

As there are nodes, whose position and movement is controlled
by the user only, the spring model may calculate states with over-
lapping. To avoid such situations, all bodies react to collisions, such
that they do not overlap and pass their impulse; user nodes do not
react do any impulses and do not collide with any other object,
allowing users to build piles and stacks of objects.

The spatial parser generates queries by identifying visual strongly
related nodes and sending them to the knowledge base. Thus, sug-
gestions are based on visual “clusters”. To improve positioning on a
cluster basis, the spring model is applied to clusters only, meaning
that suggestions which correspond to different clusters would not
influence each other. It turned out that, as the user is not able to see
explicit connections, this leads to misinterpretation of the underly-
ing semantics. Regarding the physics metaphor we added a general
force of repulsion to all suggestions in the visual space. On a cluster
basis this force has a very small impact, because spring forces keep
things together as intended, but as this is the only inter-cluster
force, suggestions of a cluster tend do move away from other clus-
ters. You can see this effect in Fig. 4a. where suggestions for “Brad
Pitt” float to the right. Moreover we added color as additional visual
clue.

Movement and interaction influence the environment and thus
the physics in the simulation. How the system reacts, depends on
the applied forces, explained above and (1) weight (defined by size
and density), (2) friction to damp velocity and (3) the coefficient of
restitution when objects collide. The values for these are slightly
arbitrary, as they influence each other and depend on the scaling
factor, which transfers meters to pixels, but we tried to achieve the
following behavior:

(1) The system should be responsive to user interactions but be
settled promptly when users stop interacting.

(2) Changes should be traceable, slow enough to follow, fast
enough to keep up with the user.

A physics simulation is susceptible to changes that do not happen
in the real physical world. Thus, the addition and removal of objects
is a crucial point in our model. A removal is handled by deleting
the object and all corresponding forces, including those applied by
the spring model. An addition is more complicated, because the
system needs to take care of the initial position of objects. If the
initial position is far away from a desired position, the simulation
will need some time to “move” the added and all other objects to
an acceptable state. Furthermore this process looks agitated, not
traceable for the user, especially when more than one object is
added to the visual space at the same time. The first idea was to run
a “hidden simulation” in the background. This eliminates the time
delay, since its computation is not bound to real time. The downside
is, that objects appear in the twinkling of an eye, without offering
a feeling for evolvement. For that reason all objects added by the
system (suggestions) are positioned in the geometric center of the
visual cluster. The resulting simulation looks like an explosion,
pushing the objects to their desired position.

A

B

rA

rB

dAB(rel)

Figure 3: The ideal distance dAB between A and B is cal-
culated with the help of the height or length of a body,
whichever is bigger (rA and rB ). The relevance rel is con-
verted to a factor

4 DEMONSTRATOR
4.1 Application domain
The DemoMedia project – developed in cooperation with Loewe
Technologies GmbH, a manufacturer and seller of consumer elec-
tronic products – is an implementation of the proposed system in
the field of entertainment. Its goal is to offer an application users
can use to organize and search movies, actors and other things
related to films and their production. A 2D space serves as room
for organization and is augmented with suggestions of the system.
Organization means, that a user can add, move, resize and delete
information entities. In this demonstrator the user types some text
to add such an entity. The entity is represented by a rectangle in
the visual space. If the system can find further information to a
typed keyword, e.g., the name of an actor, the user can, instead
of just showing the text, change the type of representation to any
media the application is offering. Currently we support pictures and
content from YouTube (see Fig. 4a). Suggestions are visual rectan-
gular objects, which contain information about movies and actors.
The user is not explicitly asking for these suggestions, they are
generated implicitly by a spatial parser, as described in Sect. 3.2.
Suggestions and user nodes can be distinguished by their size and
(missing) control bar. User nodes offer an option to resize, delete
and open other settings on their right, while suggestions are smaller
by default and offer an “+” control to “convert” a suggestion to a
user node.

The underlying data and knowledge base is crawled and com-
puted from

(1) IMDb (Internet Movie Database),
(2) television program dump provided by Gracenote and
(3) YouTube.

4.2 Use case
Users are searching for films they do not know yet, but might be
interested in. They start, like in common systems, with a keyword.
This keyword stands for a genre, year, an actor they like or anything
that helps finding related results. Those are shown visually within
the 2D space, such that the relevance to that keyword and the
relevance to each other is modeled by proximity and the physics
based behavior when interacting. This helps the user to oversee



(a) Shows three nodes: Spotlight, Toy Story 3 and Brad Pitt. The first
two are recognized as visual related by the spatial parser, which sets
the same color for them.

(b) The spatial parser identifies two visual related structures with
three nodes each.

Photo of Brad Pitt extracted and cropped from https://www.flickr.com/photos/31029865@N06/38338138066/ – by Dick Thomas Johnson, licensed under CC BY 2.0:
https://creativecommons.org/licenses/by/2.0/

Figure 4: DemoMedia screenshots

the structure of suggestions. They can refine their query by adding
more nodes with keywords, either by typing them on their own, or
by pressing the “+” button of a suggestion and dragging it to any
position they want it to be, like shown in Fig 5.

The process evolves in an iterative dialogue between user and
the system, where structures emerge, get altered or destroyed. Each
manipulation changes the positions of suggestions or introduces
new ones. Instead of using complex query languages like SQL or
filters that are hidden in drop-down menus and sliders, the user
does not have to think about how to narrow his query down. Since
the space can be panned and zoomed, the user is able to develop
many queries in visual unrelated areas, which can be merged when
he chooses to bring them together. Additionally the system offers
controls to specify the number of shown suggestions and filter for
movies or actors.

If the user is interested in details, the representation inside the
nodes can be changed. This can be a wiki page, a slide show or
the movie itself, which can be cast to a TV. It is not necessary to
leave the workspace to interact with this content, as it is directly
embedded. To improve interaction the object can be resized, zoomed,
or brought to full screen. Thus, searching and consuming do not
interrupt each other. A user can, e.g., listen to the theme music
of his favorite movie, while reorganizing nodes in the workspace,
or reading some critics. In a next step it is conceivable that this
multi modal information is added to the query, generated by a multi
modal parser, which should lead to more relevant suggestions.

The workspace is not reset when starting a new session, there-
fore the user is not forced to rethink and rebuild his associations.
This fosters the motivation to structure information visually. The
system is also able to profit of this evolving structure, because

it can improve its stored relevance values, based on parsed visual
relationships. Other users might take advantage of them afterwards.

4.3 Implementation
The developed demonstrator is a part of a larger set of services we
developed over the last few years, called Mother. Simply explained,
we divide the whole application in three pieces, (1) Hel, the knowl-
edge world, (2) Asgard, the world where spatial parsing happens
and (3) Midgard, place for user-centered applications that utilize
Asgard and Hel components (cf. [4]). Hence, the demonstrator is a
Midgard application, handling user-interaction, the user-interface
and communication with server-based Asgard/Hel layers. Overall,
Mother is a component-based open hypermedia system (CB-OHS)
with well-defined communication protocols. This increases the
system’s flexibility to include new services or user interfaces.

The demonstrator is aiming to reach people, that make use of
it at their homes sitting in an armchair. No technological affinity
should be needed to get started. We chose to implement the client
for tablet computers, because they offer a screen that is big enough
to profit from the proposed representation and a touchscreen for a
natural interaction with objects that have a proper physical behav-
ior. To reduce the need to type text with the on-screen keyboard,
the demonstrator offers text completion, thus the user just has to
type the first three letters. Beside this, many devices and operat-
ing systems allow to input handwritten text (with a pen) that gets
converted.

Whenever the user manipulates anything in the visual space,
the application is sending a binary encoded message via TCP/IP
to Asgard, that handles spatial parsing and query generation. The
query is sent to the knowledge base, which is implemented by a
low overhead component, proxying a Neo4j graph database. When

https://www.flickr.com/photos/31029865@N06/38338138066/
https://creativecommons.org/licenses/by/2.0/


Figure 5: Suggestion “Django Unchained” is dragged to a
user defined position. As it is close to “ChristophWaltz”, the
spatial parser interprets both as visual related, thus they be-
come part of the same query.

the query is processed, the answer is sent back to the application,
which takes care of the representation and physics simulation. For
dragging events the application is not just propagating the final
position of a object, but many intermediate steps, as they might
change the parser’s interpretation. The frequency of updates sent
depends on the network’s speed and delay, the spatial parser and
knowledge base. Since the application requires responsive server
components that are able to communicate without any disruptive
lags, it optimizes communication by caching and adapting the rate
of updates per second (sent to the server) to the average round trip
time of an event and its corresponding answer. The update rate
is capped to 60 events per second, which is hold most of the time
using a WiFi-connection.

The physics simulation is done by JBox2D1, an engine for sim-
ulating rigid bodies in two dimensions. The use of such a fully
fledged engine allowed us to focus on experimenting with phys-
ical properties and forces. As an engine that was developed for
games, it provides a good trade-off between speed and accuracy.
With JBox2D in hand, it was easy to apply the proposed physics
model of Sect. 3.2. The spring model is covered by the usage of
so called distance joints, which forces two objects to a specified
constant distance. Those joints can made soft by assigning them
with a frequency and damping value. The higher the frequency
value is set, the more flexible the imagined spring is and vice-versa.

1“JBox2D is a close Java port of Erin Catto’s excellent C++ Box2D physics engine and
Google’s LiquidFun physics Engine”, http://www.jbox2d.org/

5 EVALUATION
The following evaluation is based on discussions and experiences
we made together with colleagues and partners in various proj-
ects over the last two years. Those projects dealt with different
application domains but always offered a 2D space to facilitate
a information organization and retrieval process and thus came
with similar issues and challenges. Most of the observations were
made during development by our team members and university
colleagues. Industry partners were involved in two recent projects,
giving helpful feedback and user scenarios (cf. Sec. 4 and [27]).
The observations contributed to the planning of the next steps,
including user studies to survey the impact of such a system on
information retrieval processes compared to others.

5.1 Data matters
A key question of the work is about the semantic positioning of
information entities in a 2D space and their reaction to user input.
Staying in the domain of films and actors, when a node keeps a
greater distance to another than a user would expect, it is not clear
to him if the positioning is bad/wrong or the system is just assuming
a lower relevance than he does. As the quality of the knowledge
base has a similar impact on the representation as the positioning
system, may it be physics based or not, we had a hard time to tune
the parameters. Every once in a while, when the knowledge base
has grown, the link prediction algorithm or relevance calculation
changed, the physics had to be adapted as well. Two findings in
this regard:

(1) It is impossible to shrink “relevance” to a generic numerical
value. For the positioning we argued, that context matters,
the visual structure matters and the same is true for a rele-
vance calculation between information entities.

(2) Beside the isolated values, their distribution is important.
The shown calculation of an ideal distance (cf. Sect. 3.2)
is a linear function, because it implies that relevance by
proximity is interpreted in a linear way. However, if the
distribution of the relevance value is not linear, but, e.g.,
normal, this leads to an uneven usage of the available space
and most of the suggestions with a relevance of around 0.5
could hardly be distinguished.

An other concern is the quantity of information entities and
relationships in the knowledge base. For the Demonstrator in Sect. 4,
the database manages around 6,000 entities (movies, actors, etc.)
and 35,000 relationships among them. The quantity influences the
duration that is needed to process queries, which can be rather
complex and requested multiple times in a second. If the duration
the knowledge base needs to answer those queries is too long, the
application does not feel interactive anymore. Furthermore we have
to consider the limited available space to show suggestions. It may
be sufficient for 10, 20, or 30 of them, but this can only be scaled
up to a certain degree, if the application should show more than
particles. Showing, e.g., 20 of 1000 relevant suggestions might be
too fuzzy to be helpful.

5.2 Physics playground
The advantage of using a physics simulation for visualization pur-
poses is shown in Sect. 3.1. Another strength is, that interacting

http://www.jbox2d.org/


with physics makes fun. Moving nodes around, watching the re-
action of the suggestions and the process of how they organize
themselves in the space feels like playing a game. A good compari-
son is the game “Goat Simulator”, whose main goal is to do funny
things with a goat in a 3D world, simulated by ragdoll physics. This
is not just an end in itself, it fosters creativity by motivating users
to try out different combinations of structures and keywords, but
takes away attention that might be focused on examining the actual
suggestions, not just there simulated behavior.

In most situations the simulation leads to comprehensible posi-
tions and transitions. As the system is self-organizing over time, it
is not necessary to implement special animations for those. A down-
side of this is a sluggish response to interactions. We argued, that
the movement of objects needs to be damped, otherwise sugges-
tions would behave very volatile and erratic, making it impossible
to trace what is happening on the screen2. It is possible to tweak the
objects’ properties, but it turned out that physics simulations can
behave unexpected in many cases. Especially when a lot of objects
are involved it is hard to produce or prevent a certain behavior.

When too many suggestions are part of the simulation, physics
can get confusing, because the paradigm implies that each object
influences each other, may it be by forces of repulsion or attraction
of the spring model, mutual repulsion of suggestions and collisions.
The latter can result in suggestions jamming each other, because
they are attracted in different directions, but collide and thus block
each other. Fur sure, it would be possible to fiddle around, e.g.,
by implementing suggestions as circular objects or to increase
the general force of repulsion. But everything that can be done,
might have another negative impact. Circular objects occupy more
space compared to rectangular ones, when content of suggestions is
displayed as text, an increased force of repulsion influences distance
and thus the semantics (cf. Sect. 3). When the number of suggestions
exceed that of user nodes by far (roughly a factor greater than ten),
the connections starting at the user nodes getting more and more
irrelevant as they contribute less to the resulting total force.

5.3 Pitfalls
While physics simulation solves most problems of positioning and
interaction, some of them are out of its scope. Whenever multi-
dimensional information is displayed in a space of less dimensions
get lost. Often, this is not an issue, since it is sufficient to find a
solution that is good enough. In some cases this does not work,
because the result cannot be interpreted correctly. In Fig. 6 such a
case is shown in the upper half. It is impossible to find a position
for the suggestion, that is close to nodes A, B, and D, but far away
from node C. The simulation calculates a position with the lowest
potential energy in the system possible, thus the suggestion is too
close to C – implying a high relevance – and too far from D. A
possibility to improve those cases is to show suggestions more than
once, also depicted in the lower half of Fig. 6. Instead of representing
the suggestions as one object, it is split to an object (a) and (b). The
latter is decoupled from nodes A and B, allowing it to float near
D and still keeping a suitable distance to C. Accordingly, (a) is not
influenced by D. A simple physics model is not aware of such and

2See the demo video on YouTube: https://youtu.be/GX53yezHDXE

Figure 6: The upper half shows a suggestion positioned by a
springmodel. In the lower half the suggestion is split in two
parts, to improve visual representation of relevance.

similar semantic misinterpretations, thus additional algorithms, e.g.,
the described one, are needed.

Currently, the spatial parser generates queries by identifying
visual related nodes to find suggestions that are relevant to those.
A user is moving nodes, making such clusters bigger or smaller
and often, two clusters of visual related nodes unify to one. At the
moment of writing, the demonstrator deletes all former suggestion
and adds those that are part of the query result. Obviously, the
unified result is strongly related to the results before the clusters
merged. To redraw all of the suggestions seems to be a bad solution,
because we demanded traceability of all system induced actions,
especially when redrawing objects that were already part of the
space. As described before, a physics simulation cannot handle this
on its own. A potential solution would be to keep objects that would
be redrawn, but adapt the distance joints. If a suggestion appeared
for both original clusters, they could fuse into one or used as a split
suggestion.

6 CONCLUSION AND FUTUREWORK
Altogether this paper describes the problem of representing seman-
tics in a 2D space and the benefit of creating queries visually. The
physics simulation underlying model is a starting point for further
research effort in the field of visualizing semantics as human be-
ings would do. It is a novel approach to utilize the recognition of
visual structures and realizing visualization of the results as ma-
nipulation of the same spatial hypertext the users are using for
organizing their thoughts and intends. The recognition of visual
structure influences the queries sent to the knowledge base, thus
a query can be refined without changing the terms forming it. It
is a fundamental principle in the system’s design that objects in
space do represent more than a simple keyword to offer a unified
environment to consume, organize, search, or retrieve information.
The applied physics model, an adapted spring metaphor, helps to
position or manipulate system generated suggestions in such a
way that human recipients are able to interpret relations between
user or suggestion nodes appropriately. By adding or discarding
suggestions users refine their search without typing or the need of
prior knowledge.

https://youtu.be/GX53yezHDXE


In Sect. 5 we have shown open issues of the current system.
While some of them can be addressed with additional algorithms,
others are an inevitable effect of using physics. Therefore we will
improve the current implementation and examine further possibili-
ties to achieve similar or better results. For example it is worth a
while to put some work into the early approaches (cf. Sect. 3.1) to
find solutions to support a descent behavior when users manipulate
objects’ visual properties. The physics simulation encodes rele-
vance by proximity and behavior only, but there are further visual
properties that can be used, e.g., color, shape, size, or transparency.

A generic approach of assigning relevance between pairs of
information entities is followed. Any such relation can be expressed
as a value. Those serve as the main parameters for the visualization.
We consider a whole network of such related entities. Let’s assume
two nodes, A and B, and a suggestion S, which is very relevant to
A, but not at all to B. What is the “combined relevance” of S to A
and B? It may be something like an average value, but it can very
well be, that the existence of A changes the relevance of S to B. A
and B are part of the same query because the user put them into a
visual relationship for a reason. The spatial parser recognizes this
fact, the knowledge base should react to it as well by calculating
dynamic, context aware values on demand.

Spatial parsers identify way more nuances of visual relation-
ships than the binary choice between related and not related does
indicate. We clearly can see a stronger visual relation when two
nodes are close to each other and share the same color, compared
to a situation where they have a completely different hue. This
might be an information of interest when examining clusters of
three and more nodes, because – like described in the paragraph
above – this contextual information is given by the user. The limited
available space to show suggestions demands the retrieval of the
most important suggestions, not just a good positioning of those.

The presented work helped in shaping a concept that answers
a number of questions related to pre-existing applications or tech-
niques. The next big step is to implement user studies to quantify
observations we made. They will help us to understand how users
will work with such a system, which visual clues they prefer, the
accepted degree of uncertainty, or which specific values should be
used, e.g., for proximity, to encode a certain contextualized rele-
vance.

This work will find its application in a variety of upcoming proj-
ects. It is an essential part of our approach of connecting humans’
intuitions, creativity, or tacit knowledge with machines’ capabilities
of processing vast amounts of data. As such, any application domain
that includes creative tasks and benefits from machine intelligence
is a good candidate for our approach [cf. 2]. It combines Doug En-
gelbart’s original idea of “augmenting human intellect” [9] with
today’s advances in AI. With systems similar to the proposed one
we will reach a higher level of quality, effectiveness, and efficiency
in problem solving compared to human-only or machine-only ap-
proaches. We expect this research direction to become the next
“synchronization point”, as described in our 2017 paper [4] and to
gain in importance among the discussions within the hypertext
community.
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